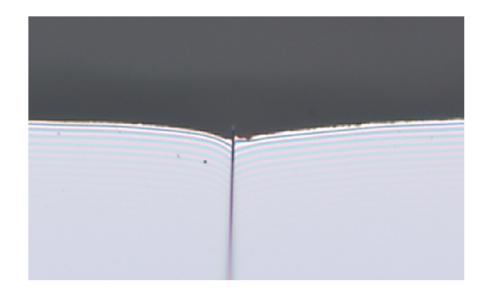
Mechanical TEM Sample Preparation


Pablo Mendoza Jessica Enos Allied High Tech Products, Inc.

SEPTEMBER 29–OCTOBER 3, 2019 Oregon Convention Center • Portland, Oregon USA

Matscitech.org

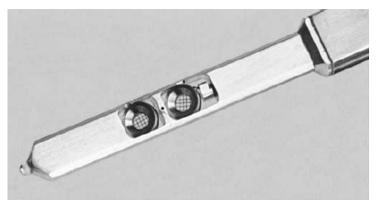
Overview

- Basics
 - What is a TEM sample?
 - What are the requirements?
 - What are the methods of preparing TEM samples?
- Thin Film Preparation
 Process

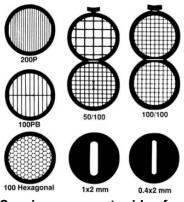
What is a TEM Sample?

• TEM

- Transmission Electron
 Microscopy is a microscopy
 technique in which a beam of
 electrons is transmitted though a
 specimen to form an image.
- TEM Sample
 - A specimen that is usually ultra thin (<100 nm) so that electrons can be transmitted through it.



Zeiss HRTEM [3]



TEM Sample Requirements

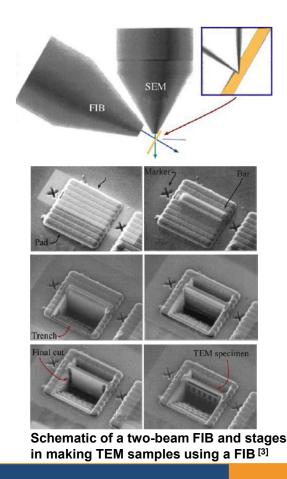
- Must be electron transparent
- Must have a submicron thickness
- Must have an area of ≤3 mm to fit various TEM grids and holders
- Any deformation from previous processing must be removed.

Two-specimen holder with double-tilt ^[3]

Specimen support grids of different mesh sizes and shapes ^[3]

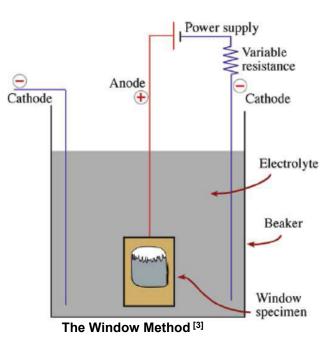
Indexed Meeting and Enhance

SEPTEMBER 29–OCTOBER 3, 2019 Oregon Convention Center • Portland, Oregon USA


Matscitech.org

Common Methods of Preparation

- Ion Milling/FIB
- Electropolishing
- Mechanical Preparation
 Thin Film Preparation


Ion Milling/FIB

- Bombarding a TEM sample with energetic ions or neutral atoms and sputtering material from the sample until it is thin enough to study in the TEM ^[3]
- A versatile thinning process that can be used for a wide variety of materials
- Is expensive to purchase and run
- Implantation of source material and an amorphous layer is created

Electropolishing

- Immersing a sample in an electrolyte and subjecting it to a direct electrical current
 - Keep the sample anodic with a cathodic connection to a nearby metal conductor ^[2].
 - The anodic dissolution of the sample polishes the surface.
- Relatively quick and can produce samples with no mechanical damage
- Can only be used for electrically conductive metals and alloys

Mechanical Preparation

- Smoothing the sample surface using abrasives and mechanical tools
- Common types:
 - Manual: Uses hand tools (tripods) that allow the user to make angle adjustments
 - Semi-Automatic: Uses precision polishers with digital indicators and micrometers
 - Dimpling: Mechanical dimplers use a small-radius tool to grind and polish samples to a fixed radius of curvature in the center.

Technel Meeting and Exhibition MSSC T199

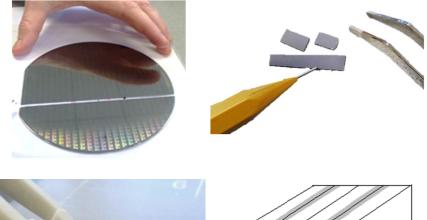
Mechanical Preparation

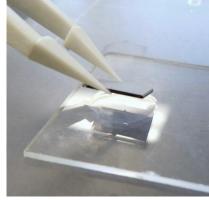
Advantages

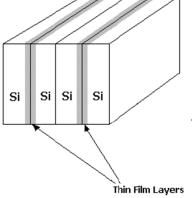
- TEM Wedge Capabilities
- All damage removed using proper material removal procedures
- No foreign material implanted
- Repeatable and fast with experience
- Lower cost of required equipment
- Decreases milling time and costs

- Disadvantages
 - Requires careful handling throughout the process
 - Greater learning curve than other techniques
 - Some samples may require additional processing using one of the other TEM preparation techniques

Thin Film Preparation Process


- Thin film samples are commonly prepared using mechanical methods. The process includes:
 - Preparing the Sample
 - Fixturing
 - Grinding the Pyrex[®]
 - Thinning the First Side


- Flipping the Sample
- Stopping Point
- Inducing a Wedge
- Color and Fringes



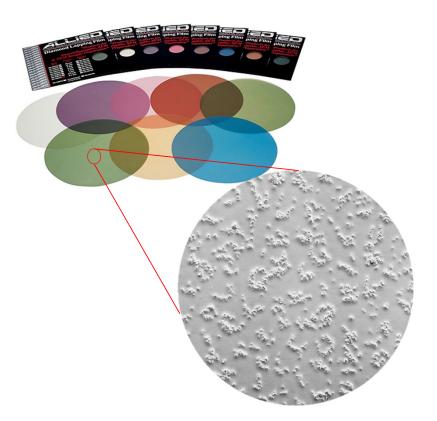
Preparing the Sample

- Wafers are scribed down to a manageable size.
- Using an appropriate adhesive, such as M-Bond 610, the thin film surfaces are "sandwiched" together.

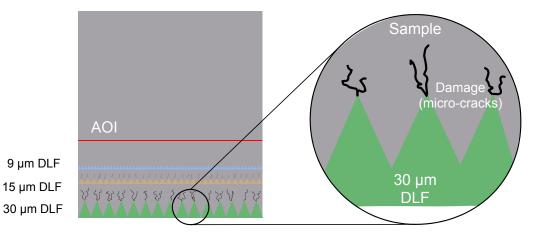
Grinding the Pyrex[®]

- The surface of the Pyrex[®] piece on a thinning fixture requires grinding to ensure it is parallel to the platen, or the grinding plane.
- Pyrex[®] can be ground using diamond lapping films.
 - A 15-9 µm finish is acceptable.
 - Do not polish the surface; having some scratches will help with adhesion.

Fixturing


- Secure the sample on a thinning fixture with mounting wax.
- Place the fixture on a hot plate to melt the wax.
- Apply light pressure using a cotton-tipped applicator to assist in parallel registration of the sample to the fixture.

Thinning the First Side


- Abrasive: Diamond Lapping Films
 - Provide excellent edge retention and maintain coplanarity
 - Typically used for unencapsulated cross-sectioning, TEM preparation, backside polishing, etc.

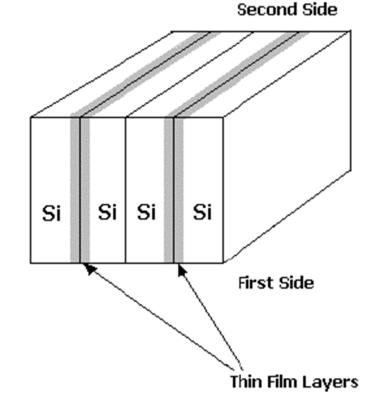
Thinning the First Side

- The sample surface is damaged throughout the grinding process.
 - Scratch patterns
 - Micro-cracks that can propagate further into the sample

3X Rule

- Remove 3 times the previous abrasive to completely remove any damage.
 - Ex: If a 30 μm lapping film is followed by a 15 μm lapping film, the 15 μm film must remove at least 90 μm (3 x 30 μm) to completely remove any damage.

Current Step (DLF)	Current Distance from Target	Previous Step	Remove At Least 3x Prev. Step Size	Distance to Target After Current Step
30 µm	Varies	N/A	N/A	192 µm
15 µm	192 µm	30 µm	90 µm	102 µm
9 µm	102 µm	15 µm	45 µm	57 µm
6 µm	57 µm	9 µm	27 µm	30 µm
3 µm	30 µm	6 µm	18 µm	12 µm
1 µm	12 µm	3 µm	9 µm	3µm
0.5 µm	3 µm	1 µm	3 µm	At Target

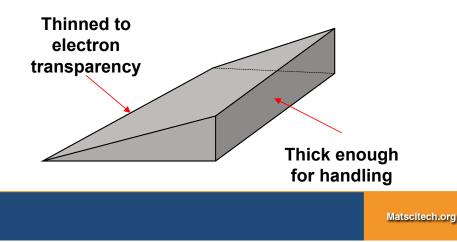


3X Rule

- Certain materials, such as ductile steels, may only require a "2X Rule."
- Fragile, brittle materials, such as ceramics, may require a "4X Rule" since cracks can propagate further into the sample.
- Main Concept: No matter what steps follow, all damage introduced by the previous abrasive must be removed to obtain an accurate representation of the microstructure.

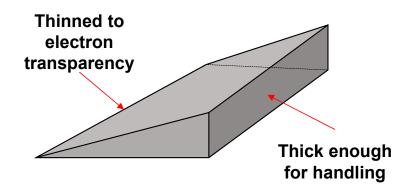
Flipping the Sample

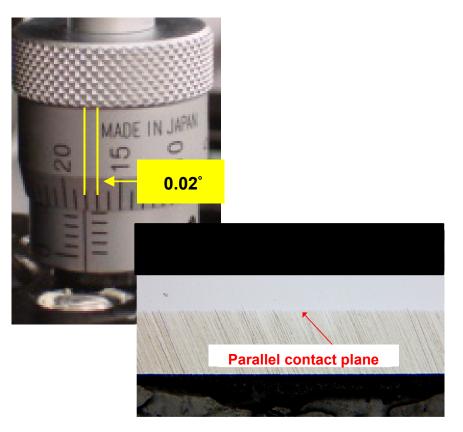
- Reheat the fixture on a hot plate.
- Carefully remove and clean the sample, and then place it back on the fixture with the polished side face down.
- Thin the sample according to the 3X rule.


Goal: Pre-FIB or TEM Wedge?

Pre-FIB Thinning

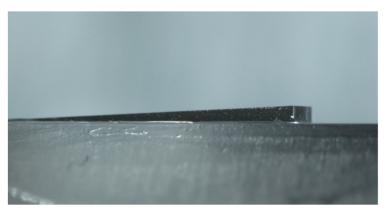
 Remove the sample to prepare for FIB thinning by placing the paddle into a piece of filter paper, and then into a container of acetone to remove the wax.

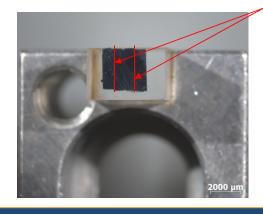

TEM Wedge


- Induce an angle to create a wedge sample.
- The degree of the angle depends on the material being prepared.

Inducing a Wedge

 Micrometers on precision polishers are used to induce an angle on the sample and create a wedge.





When is the Sample Complete?

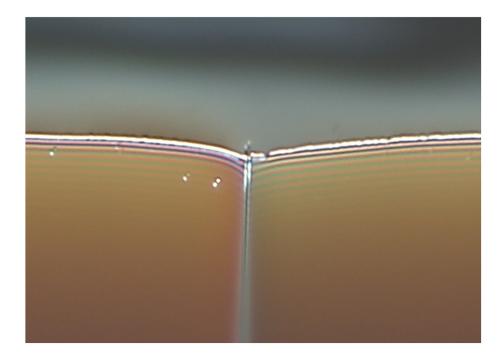
- Bulk
 - Homogeneous material
 - Can stop anywhere; only a useable area is needed
- Thin Film
 - Film on material deposited on surface
 - Prepared properly, can stop anywhere

Areas of Interest

Matscitech.org

Color and Fringes

- Certain TEM samples can display a series of colors in regions <10 µm thick with a transmitted light microscope.
- Fringes can also occur in regions <2 µm thick.
- Colors that correspond with different thicknesses vary based on materials; however, some are well documented, such as silicon.

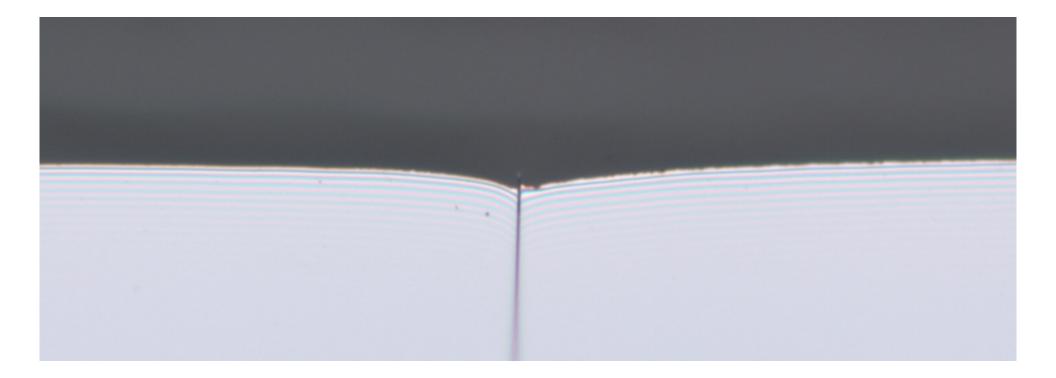


Color and Fringes

 Color and fringe information can be used to assist in the preparation of TEM samples, as they are a guide to overall progress during a TEM wedge procedure.

Si thickness [µm]	5	4	3	2	1
Color	Red	Reddish-	Orange-	Orange	Light
		orange	red		orange

Correspondence between Si wafer thickness and color of transmitted light ^[4]



SEPTEMBER 29–OCTOBER 3, 2019 Oregon Convention Center • Portland, Oregon USA

Matscitech.org

SEPTEMBER 29–OCTOBER 3, 2019 Oregon Convention Center • Portland, Oregon USA

Matscitech.org

References

- 1. Allied High Tech Products, Inc., http://www.alliedhightech.com/. Accessed 16 September 2019.
- 2. Delstar Metal Finishing, Inc., *Electropolishing A User's Guide to Applications, Quality Standards and Specifications*, https://www.delstar.com/assets/pdf/epusersguide.pdf. Accessed 23 May 2018.
- 3. Williams, David B, and C B. Carter. *Transmission Electron Microscopy: A Textbook for Materials Science*. New York: Plenum Press, 1996. Print.
- 4. Yougui Liao. Practical Electron Microscopy and Database. URL: http://www.globalsino.com/EM/page2805.html. GlobalSino 2007.

Questions

Pablo Mendoza

Laboratory Supervisor, Technical Services Allied High Tech Products, Inc. pmendoza@alliedhightech.com

Jessica Enos

Sr Materials Engineer, Technical Services Allied High Tech Products, Inc. jmenos@alliedhightech.com

Technical Services

Allied High Tech Products, Inc. (800) 675-1118 (North America) (310) 635-2466 (Worldwide) lab@alliedhightech.com

