

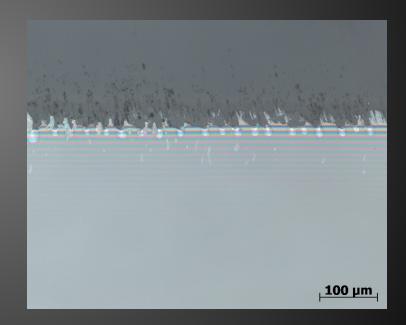
## TEM Sample Preparation & Optical Microscopes

Pablo Mendoza Allied High Tech Products, Inc.



#### Introduction

- Materials Engineer
- Allied High Tech Products, Inc.
- 4 years of laboratory experience
- Primary responsibilities:
  - Procedure development for various materials
  - Image Analysis
  - Customer support/training


- Allied High Tech Products, Inc.
- Founded in 1983
- An American Manufacturer and distributor of high quality equipment and consumables for metallographic sample preparation and analysis.
- Zeiss Optical Microscope National Dealer
- Mitutoyo Rockwell and MHT Dealer





## Topics

- Basics
  - What is a TEM sample?
  - Requirements?
  - Methods of preparing TEM samples?
- Mechanical preparation of a TEM sample
  - Preparation process
  - The role of optical microscopy in the sample preparation process
  - Stopping point: Pre-FIB thinning or TEM Wedge?





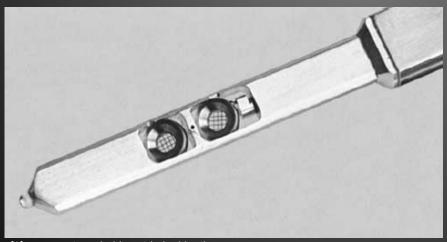
#### What is a TEM Sample?

TEM – Transmission electron microscopy is a microscope technique in which a beam of electrons is transmitted through a specimen to form an image.

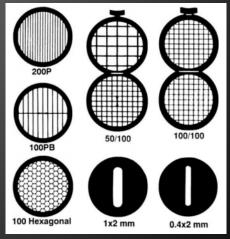
TEM Sample – Specimen that is usually ultra thin (<100 nm) to allow electrons to transmit through.



[3] Zeiss HRTEM




#### **TEM Sample Requirements**

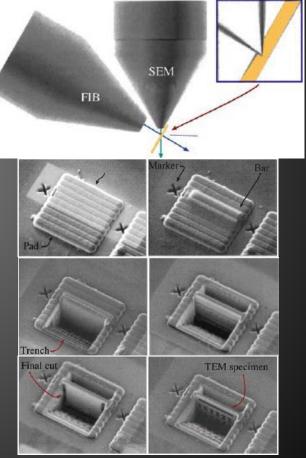

TEM samples must be electron transparent and generally the goal is a sample thickness of <100 nm

Any deformation from thinning process or previous processing must be removed

Small area, < 3 mm or less, to fit various TEM grids and holders



[3] Two-specimen holder with double-tilt

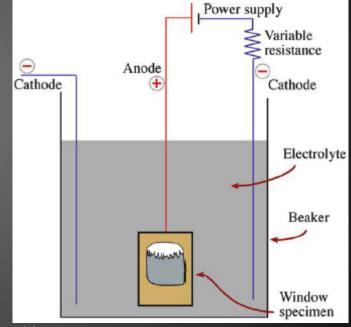



[3] Specimen support grids of different mesh size and shape



#### **Common Methods of Preparation**

- Ion Milling/FIB Focused Ion Beam
- Process that involves bombarding a TEM sample with energetic ions or neutral atoms and sputtering material from the sample until it is thin enough to study in the TEM [3].
- The most versatile thinning process that can be used for a wide variety of materials, however very expensive to initially invest in and to run.
- Disadvantage is implantation of source material and amorphous layer is created.
- Most commonly used in semiconductors.




[3] Schematic of a two-beam FIB and stages in making TEM samples using a FIB



### **Common Methods of Preparation**

- Electropolishing
- Sample is immersed in an electrolyte and then subjected to a direct electrical current. The sample is maintained anodic, with the cathodic connection being made to a nearby metal conductor. [2]
- Anodic dissolution of sample creates polished surface.
- Relatively quick and can produce samples with no mechanical damage, however can only be used for electrically conducting metals and alloys.



[3] The Window Method



#### **Common Methods of Preparation**

- Mechanical Preparation: Can be performed by hand or with the aid of a machine
- Manual: Utilizes hand tools (Tripods) that allow the user to make angle adjustments
- Semi-Automatic: Precision polishers, such as the MultiPrep<sup>™</sup> System, with digital indicators and dual micrometers allow:
  - Monitor amount of material removed in real time in 1-micron increments
  - Precise sample tilt adjustments relative to the abrasive plane. Alignment ensures controlled angles.





#### **Mechanical Preparation**

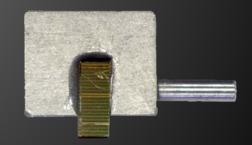
#### Advantages

- TEM Wedge capabilities
- All damage removed using the 3x rule
- No foreign material implanted
- With experience it is repeatable and fast
- Lower cost of required equipment
- Decrease milling time and costs

- Disadvantages
  - Requires careful handling throughout process
  - Greater learning curve than others techniques
  - Some samples may require one of the other TEM preparation methods such as metals due to internal strain



#### Preparation


- Area of interest needs to be identified; site-specific or bulk?
- Once determined, sample needs to be prepared
- Preparing TEM samples is essentially performing two cross-sections





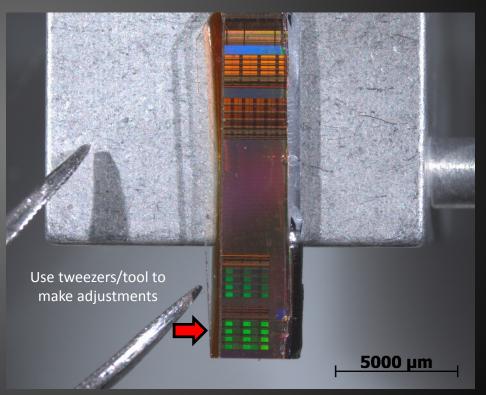
- Sample placed onto a cross-sectioning paddle using mounting wax
- Paddle placed on hot plate to melt wax
- Light pressure can be applied using a cotton-tipped applicator to assist in parallel registration of the sample to the fixture.







- Stereomicroscope can greatly assist in aligning the sample to the fixture
- Tools such as the MultiPrep<sup>™</sup> may have methods of correcting for the angle; however, using a stereomicroscope can minimize the amount of corrections required




PABLO

MENDOZA

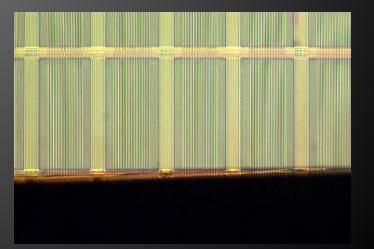


- While the paddle is hot, it can be taken to a stereomicroscope
- This allows for sample adjustments before the wax cools and hardens



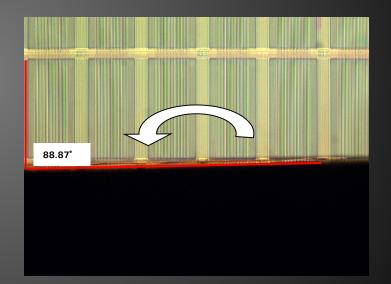
Initial adjustments under microscope




- Lapping films used as abrasive
  - Provide excellent edge retention and maintain coplanarity
  - Typically used for unencapsulated crosssectioning, TEM preparation, backside polishing, etc.

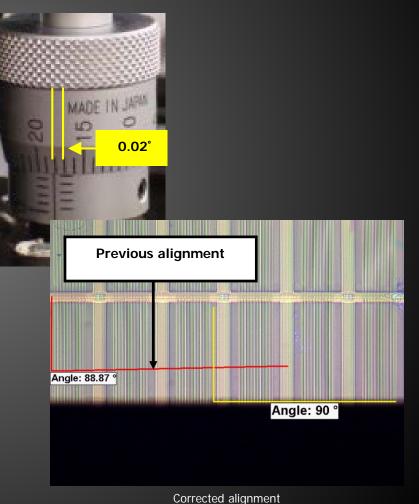





- Initial grinding with a coarse lapping film, such as 30 μm, will give a ground edge
- This ground edge can be used to obtain angle information using optical microscopy








- Compound light microscopes will give the resolution and details needed to perform corrections
- Imaging software can be used to obtain angle measurements





- Angle corrections can be made using the micrometers
- Each tick mark is 0.02°
- More material can be removed to obtain a new ground edge
- With the new ground edge, the process can be repeated until an angle correction is no longer necessary





#### Target: Site-Specific or Bulk?

#### Site-Specific

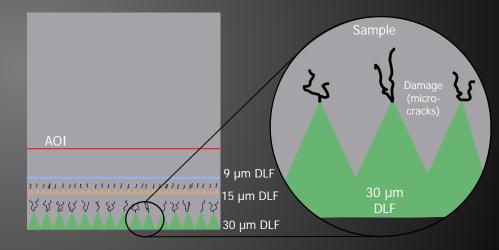
- Particular feature on sample
- Failure Analysis

Must stop at target, without damage from previous steps



Bulk

Homogeneous material


Can stop anywhere, however ensure no damage from previous steps





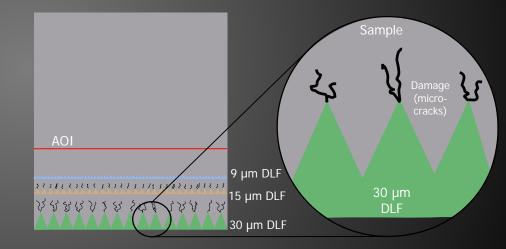
#### 3X Rule

- Damage is introduced into a sample throughout the preparation process.
- This damage is not only represented by a scratch pattern on the surface, but also by smaller micro-cracks that can propagate further into the sample that may not be seen by eye or optical microscopes (A 30 µm lapping film will <u>not</u> cause <u>only</u> 30 µm deep scratches).



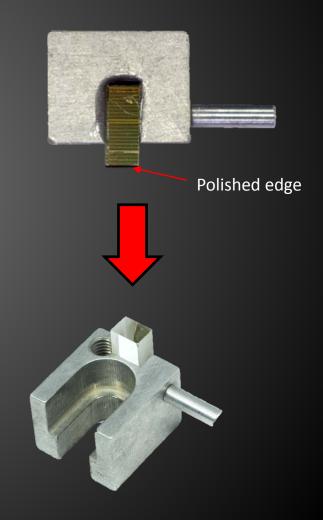


#### 3X Rule


If a 30 μm lapping film is used and it is followed by a 15 μm lapping film step, the 15 μm DLF must remove at least 90 μm of material to completely remove the damage from the 30 μm DLF. Similarly, if a 30 μm DLF is used and it is followed by a 6 μm DLF, then the 6 μm DLF must remove at least 90 μm of material to completely remove the remaining damage.

| 3X Rule               |                                    |               |                                          |                                             |  |  |  |  |
|-----------------------|------------------------------------|---------------|------------------------------------------|---------------------------------------------|--|--|--|--|
| Current Step<br>(DLF) | Current<br>Distance from<br>Target | Previous Step | Remove At<br>Least 3x Prev.<br>Step Size | Distance to<br>Target After<br>Current Step |  |  |  |  |
| 30 µm                 | Vary                               | N/A           | N/A                                      | 192 µm                                      |  |  |  |  |
| 15 µm                 | 192 µm                             | 30 µm         | 90 µm                                    | 102 µm                                      |  |  |  |  |
| 9 µm                  | 102 µm                             | 15 µm         | 45 µm                                    | 57 µm                                       |  |  |  |  |
| 6 µm                  | 57 µm                              | 9 µm          | 27 µm                                    | 30 µm                                       |  |  |  |  |
| 3 µm                  | 30 µm                              | 6 µm          | 18 µm                                    | 12 µm                                       |  |  |  |  |
| 1 µm                  | 12 µm                              | 3 µm          | 9 µm                                     | 3µm                                         |  |  |  |  |
| 0.5 µm                | 3 µm                               | 1 µm          | 3 µm                                     | At Target                                   |  |  |  |  |




#### 3X Rule

- Other materials, such as ductile steels, may only require a "2X Rule", while fragile, brittle ceramics, where cracks can propagate further into the sample, may require a "4X Rule".
- The main concept to understand is that no matter what steps follow, all damage introduced by the previous abrasive must be removed to get an accurate representation on the microstructure.






- 2<sup>nd</sup> side needs to be prepared to thin sample
- Previous method using crosssectioning paddle can't be used; can't overhang sample properly
- TEM paddles with Pyrex<sup>®</sup> inserts are used to continue with the 2<sup>nd</sup> side





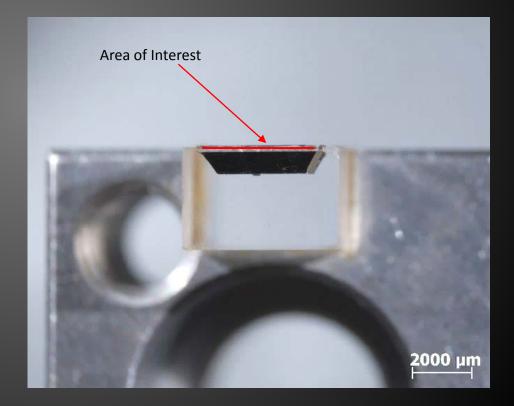
- Surface of Pyrex<sup>®</sup> requires grinding
  - Grinding the surface of the Pyrex<sup>®</sup> will align it with that of the platen, ensuring parallelism
- Pyrex<sup>®</sup> can be ground using diamond lapping films
  - 6-3  $\mu$ m finish is good enough
  - Do not want to polish the surface as having some scratches will help with adhesion





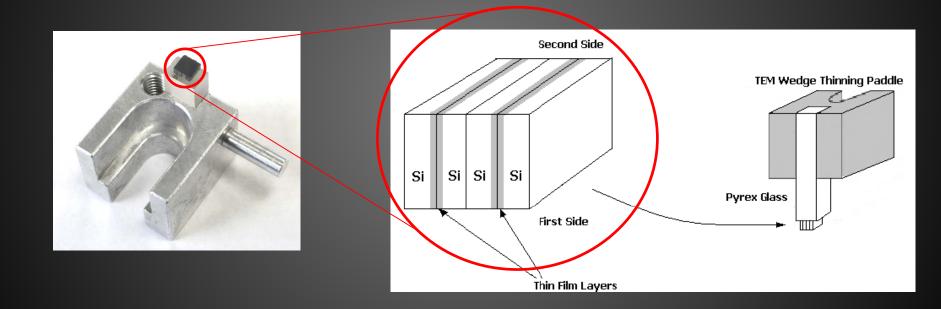
### Site-Specific Orientation






©ALLIED HIGH TECH PRODUCTS



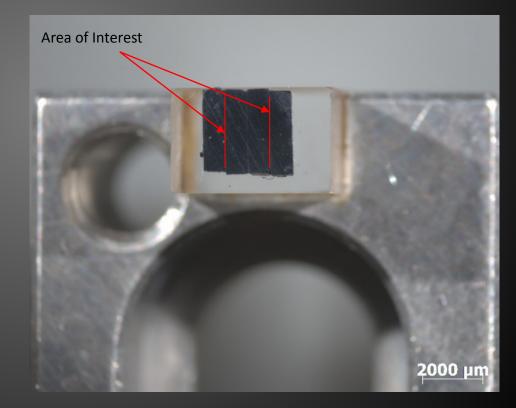

#### Site-Specific Orientation

 With site-specific orientation, the area of interest is parallel to the Pyrex<sup>®</sup> edge





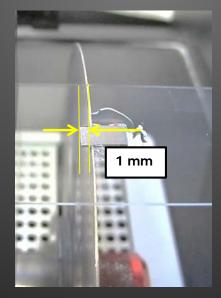
#### **Bulk Orientation**




©ALLIED HIGH TECH PRODUCTS



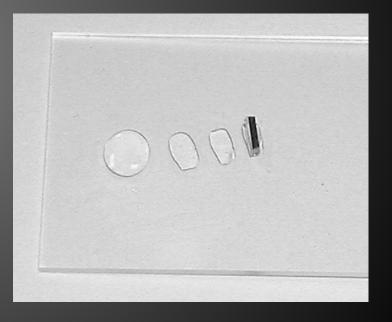
#### **Bulk Orientation**


With bulk orientation, the area of interest is perpendicular to the Pyrex<sup>®</sup> edge



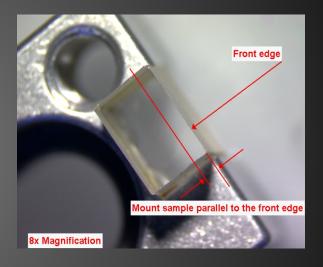


- Sample waxed onto a glass slide
- ~1 mm thick piece sectioned from sample
  - This allows placement onto TEM paddle without risk of the sample breaking off due to being too tall
- Sample should be cleaned to remove abrasive particulates, excess wax, etc.





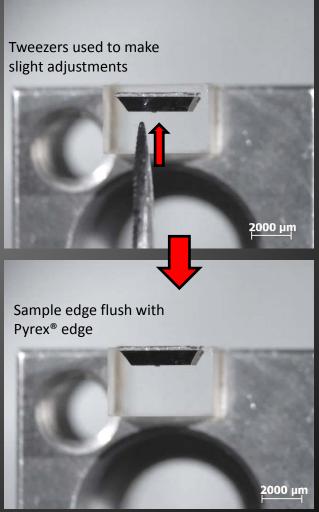



- To ensure stability, a thin, uniform layer of wax needs to be used.
- Wax Bead Method
  - Place sample, polished side down, into wax bead
  - Pick up sample and move over to empty part of glass slide
  - Allow wax to wick away
  - Repeat process 2-3 more times to end up with thin wax layer

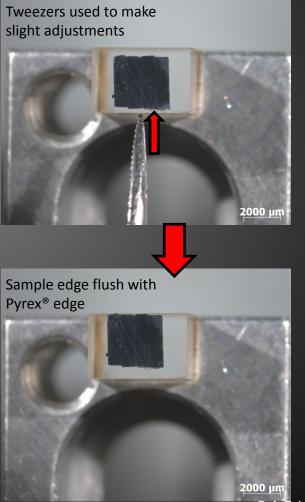





- Polished side placed face down onto the Pyrex<sup>®</sup>
- Positioned near the edge to allow easier thickness measurements later



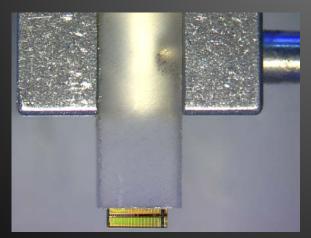


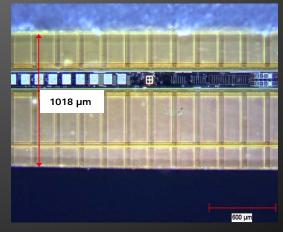



 Stereomicroscope is great for aligning to the edge of the Pyrex<sup>®</sup>






 Stereomicroscope is great for aligning to the edge of the Pyrex<sup>®</sup>

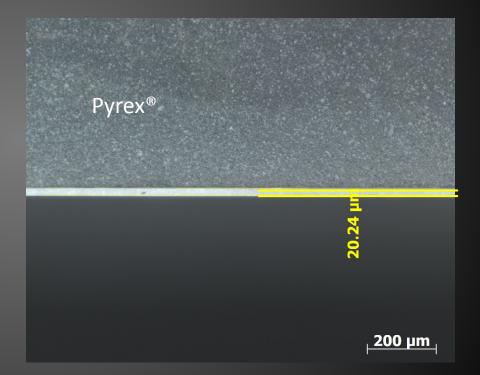





#### Second Side

- Second side, whether site specific or not, now has a final target
  - Can lose sample if thin/polish for too long
- Checking sample thickness becomes extremely important if you want to remove all the damage from previous steps
- Certain machines, such as the MultiPrep<sup>™</sup> System, may have indicators or other methods to track material removal
  - However, checking progress frequently with an optical microscope is a good way to verify material being removed: <u>trust but verify</u>






©ALLIED HIGH TECH PRODUCTS

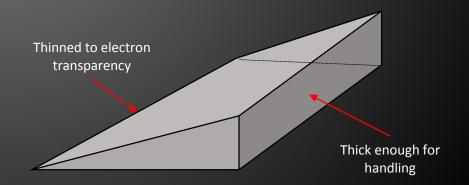


#### Second Side

- Mounting the sample close to the edge allows for proper focusing on the sample to measure side 1 edge
- Compound scope can give required resolution to view sample thickness and make measurements



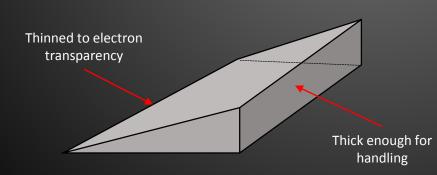



#### Goal: Pre-FIB or TEM Wedge?

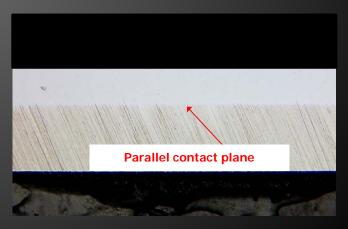
#### **Pre-FIB** Thinning

- Site-Specific Orientation
- Remove the sample to prepare for FIB thinning
- Sample can be removed by placing paddle into container with acetone (wax dissolves in acetone)
- Filter paper placed around paddle so sample will eventually pop-off and land on paper

#### TEM Wedge


- Bulk Orientation
- Induce an angle to create a wedge sample
- Angle induced will vary depending on the material being prepared






#### Inducing Wedge

- Micrometers on MultiPrep<sup>™</sup> used to induce an angle on the sample to create a wedge
- Wedge allows for a sample thinned on one edge, with a thick enough edge for handling







©ALLIED HIGH TECH PRODUCTS

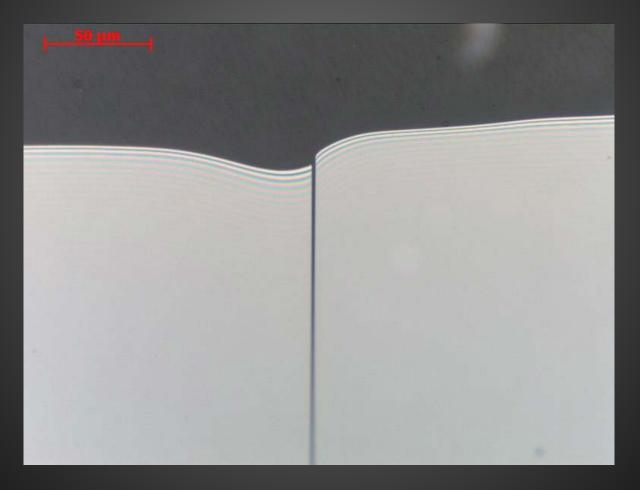


- Certain TEM samples, along with the use of a transmitted light microscope, can display a series of colors in regions less than 10 μm thick
- Fringes can also occur in regions less than 2 μm thick
- The thickness that color corresponds to will vary depending on materials; however, some are well documented, such as silicon

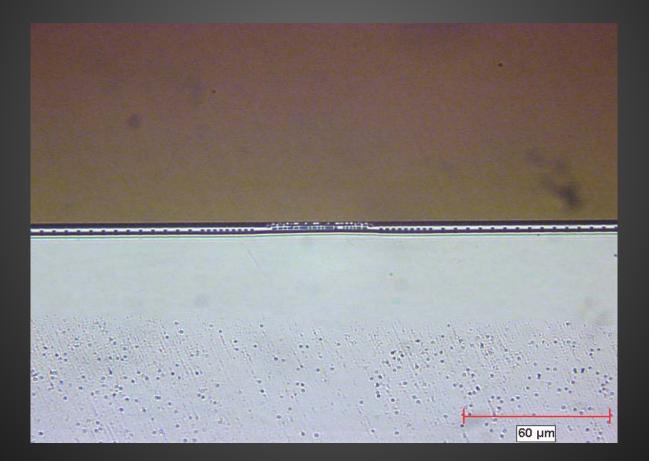




Color and fringe information can be used to assist in the preparation of TEM samples, as they are a guide to overall progress during a TEM wedge procedure

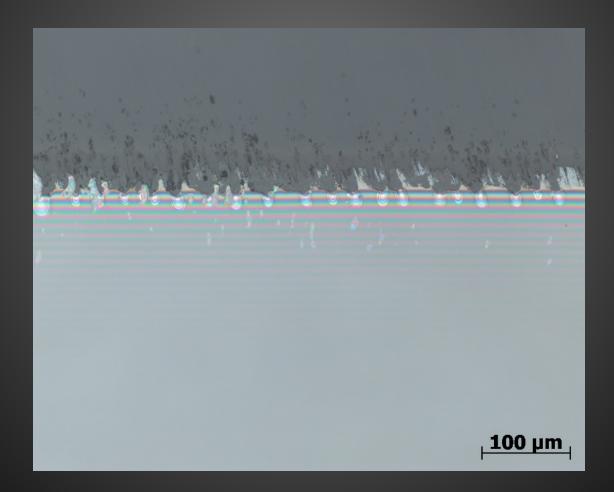

| Si thickness [µm] | 5   | 4      | 3   | 2      | 1      |
|-------------------|-----|--------|-----|--------|--------|
| Color             | Red |        |     | Orange | Light  |
|                   |     | orange | red |        | orange |

[4] Correspondence between Si wafer thickness and color of transmitted light



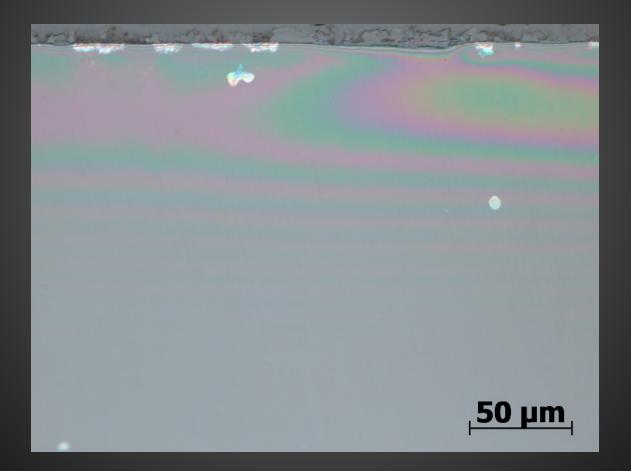

©ALLIED HIGH TECH PRODUCTS











© ALLIED HIGH TECH PRODUCTS





©ALLIED HIGH TECH PRODUCTS





© ALLIED HIGH TECH PRODUCTS



## References

- 1. Allied High Tech Products, Inc., http://www.alliedhightech.com/. Accessed 23 May 2018.
- 2. Delstar Metal Finishing, Inc., *Electropolishing A User's Guide to Applications, Quality Standards and Specifications*, https://www.delstar.com/assets/pdf/epusersguide.pdf. Accessed 23 May 2018.
- 3. Williams, David B, and C B. Carter. *Transmission Electron Microscopy: A Textbook for Materials Science*. New York: Plenum Press, 1996. Print.
- 4. Yougui Liao. Practical Electron Microscopy and Database. URL: http://www.globalsino.com/EM/page2805.html. GlobalSino 2007.

©ALLIED HIGH TECH PRODUCTS



# Questions?



Pablo Mendoza Materials Engineer, Technical Services Allied High Tech Products, Inc.

pmendoza@alliedhightech.com